8.2 Multiple time series each observing a RW

Each time series is observing its own random walk but the random walks have correlated process error. [x1x2x3]t=[x1x2x3]t1+[u1u2u3]+[w1w2w3], wtMVN([000],[q1c12c13c12q2c23c13c23q3])[y1y2y3]t=[100010100][x1x2x3]t+[000]+[v1v2v3], vtMVN([000],[r000r000r])

Create set up the model:

Q <- "unconstrained"
R <- "diagonal and equal"

Fit with MARSS():

fit <- MARSS(yt, model = list(R = R, Q = Q))
plot.pars(fit)

Look at the Q. Hood Canal (HC) appears to be behaving independently.

Q.est <- coef(fit, type = "matrix")$Q
rownames(Q.est) <- rownames(yt)
corrplot::corrplot(cov2cor(Q.est))