8.2 Multiple time series each observing a RW
Each time series is observing its own random walk but the random walks have correlated process error. [x1x2x3]t=[x1x2x3]t−1+[u1u2u3]+[w1w2w3], wt∼MVN([000],[q1c12c13c12q2c23c13c23q3])[y1y2y3]t=[100010100][x1x2x3]t+[000]+[v1v2v3], vt∼MVN([000],[r000r000r])
Create set up the model:
<- "unconstrained"
Q <- "diagonal and equal" R
Fit with MARSS()
:
<- MARSS(yt, model = list(R = R, Q = Q)) fit
plot.pars(fit)
Look at the Q. Hood Canal (HC) appears to be behaving independently.
<- coef(fit, type = "matrix")$Q
Q.est rownames(Q.est) <- rownames(yt)
::corrplot(cov2cor(Q.est)) corrplot